

Preliminary Program

P25

A NOVEL MODEL OF US METROPOLITAN PEDIATRIC SURGEON DENSITY

Jonathan Vacek, MD¹, Yazan K. Rizeq¹, Benjamin T. Many, MD², Ferdynand Hebal¹, Seth D. Goldstein, MD, MPhil³, Hassan Ghomrawi¹, Fizan Abdullah, MD¹

¹Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA, ²Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA, ³Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA

P26

THE EVIDENCE ON EVIDENCE-BASED MEDICINE DECISION MAKING AMONG PEDIATRIC SURGEONS

Matthew S. Alexander, MD, MHA¹, Erica M. Carlisle, MD²

¹UIHC, Iowa City, IA, USA, ²University of Iowa Stead Family Children's Hospital, Iowa City, IA, USA

P27

SCREENING FOR INTIMATE PARTNER VIOLENCE IN THE PEDIATRIC SURGERY CLINIC: A FEASIBILITY STUDY

Ishna Sharma, MD¹, Jordan Zajac¹, Sarah Neubert¹, Susan DiVietro¹, Rebecca Beebe¹, Garry Lapidus¹, Brendan T. Campbell²

¹Connecticut Children's Medical Center, Hartford, CT, USA, ²American College of Surgeons Committee on Trauma, Chicago, IL, USA

P28

SOCIAL SCREENING IN PEDIATRIC SURGERY CLINICS WITHIN A TERITARY CHILDREN'S HOSPITAL

Robert Baird, MDCM, MSc¹, Bonnie He¹, Damian Duffy², Robert Baird³, Douglas Courtemanche⁴, Christine Loock⁵

¹University of British Columbia, Vancouver, BC, Canada, ²Office of Pediatric Surgical Evaluation and Innovation, Vancouver, BC, Canada, ³British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada, ⁴BC Children's Hospital, Vancouver, BC, Canada, ⁵BC Children's Hospital Research Institute, Vancouver, BC, Canada

P29

PEDIATRIC OBESITY IN THE USA: LOWER SOCIOECONOMIC STATUS MAY LEAD TO INADEQUATE TREATMENT

Numa Perez, MD¹, Cornelia Griggs², Sahael Stapleton¹, Fatima Stanford¹, Janey Pratt³, David Chang, PhD, MPH, MBA¹, Cassandra M. Kelleher. MD⁴

¹Massachusetts General Hospital, Boston, MA, USA, ²NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA, ³Stanford University School of Medicine, Stanford, CA, USA, ⁴MassGeneral Hospital for Children, Boston, MA, USA

P30

WHEN PRIMARY REPAIR IS NOT ENOUGH: A COMPARISON OF SYNTHETIC PATCH VERSUS MUSCLE FLAP REPAIR FOR LARGE CONGENITAL DIAPHRAGMATIC HERNIA

Emrah Aydin, **Heather R. Nolan, MD**, Jose Peiro, Patricia Burns, Beth A. Rymeski, MD, Foong-Yen Lim, MD *Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA*

When primary repair is not enough: A comparison of synthetic patch Children's versus muscle flap repair for large congenital diaphragmatic hernia

Emrah Aydin MD, Heather R. Nolan MD, Jose L. Peiro MD, Patricia Burns, Beth Rymeski DO, Foong-Yen Lim MD

Background

- Congenital Diaphragmatic Hernia (CDH) occurs in 1 in 3,000-4,000 live births¹
- While small defects can be repaired primarily, large defects require a prosthetic patch or muscle flap to bridge the gap
- Few studies compare techniques head to head and evaluate durability
- Goal: Describe our experience with prosthetic patch and muscle flap repairs for large defect CDH and evaluate diaphragmatic reherniation

Methods

- Retrospective analysis
- 2005 to 2016
- Electronic medical record review and phone call follow-up
- Patch of GORE-TEX® or DUALMESH®
- Muscle flap of transversus abdominis with or without internal oblique

Additional GORE-TEX

2 years 1 month

Results

- 171 CDH repairs, 151 survived to discharge, 131 long term -119 open: 28 primary, 34 patch, 57 flap
- Patch vs Flap
- -similar patient characteristics (Table 1)
- -comparable operative data (Table 2)
- -low recurrence rates (Table 3)

Table 1

	Patch (n=34)	Flap (n=57)	р			
Patient characteristics						
Gestational age at delivery	37.41 ± 1.87	37.23 ± 1.85	0.657			
(weeks)						
Gender (male)	18 (52.9%)	31 (54.4%)	0.894			
Birth weight (grams)	2908 ± 536	2853 ± 562	0.647			
Maternal age (years)	28.82 ± 6.64	28.44 ± 6.52	0.787			
Delivery type			0.891			
Vaginal	11 (32.4%)	21 (36.8%)	0.664			
Cesarean section	22 (64.7%)	34 (59.6%)	0.631			
EXIT	1 (2.9%)	2 (3.5%)	0.883			
Diagnosed syndrome	1 (2.9%)	7 (12.3%)	0.128			
chromosomal abnormality	0	4 (7.0%)	0.114			
Presence of comorbidity	8 (23.5%)	11 (19.3%)	0.631			
Prenatal diagnosis	27 (79.4%)	52 (91.2%)	0.107			
Hernia characteristics						
Left sided CDH	19 (55.9%)	49 (86.0%)	0.001			
diaphragmatic hernia sac	6 (17.6%)	7 (12.3%)	0.479			
CDH study group type			0.939			
В	8 (23.5%)	12 (21.1%)	0.783			
C	18 (52.9%)	30 (52.6%)	0.977			
D	8 (23.5%)	15 (26.3%)	0.767			
Liver up	24 (77.4%)	38 (66.7%)	0.291			
LHR	1.13 ± 0.45	1.19 ± 0.49	0.628			
O/E LHR	27.93 ± 10.86	28.66 ± 10.08	0.789			
Values expressed as means + standard deviations or counts (percentage of the group)						

Values expressed as means ± standard deviations or counts (percentage of the group) EXIT, ex utero intrapartum treatment; CDH, congenital diaphragmatic hernia; LHR, lung-to-head ratio; O/E LHR, observed to expected lung-to-head ratio.

11 years 8 months

1 year 4 months

Table 3

Age at study completion

		Prosthetic Patch			Muscle Flap		
	P1	P2	P3	F1	F2		
Day of life at initial repair	8 days	6 days	22 days	7 days	18 days		
Side of defect	Left	Right	Right	Left	Left		
CDH group classification	Type B	Type C	Type C	Type C	Type C		
Initial repair	Laparotomy, GORE-TEX Patch	Thoracotomy, GORE-TEX Patch	Laparotomy, GORE-TEX Patch	Laparotomy, Transversus Abdominis Muscle Flap	Laparotomy, Transversus Abdominis & Internal Oblique Muscle Flap		
1 st Recurrence Time from initial repair	6.2 months	5.5 months	5.6 months	103.8 months	3.5 months		
Location of recurrence	Posterolateral	Posterior	Posterior	Medial	Posterolateral		
Repair	Thoracoscopy, Simple	Thoracotomy, Additional GORE-TEX	Laparotomy, Additional GORE-TEX	Laparoscopy, Surgisis	Thoracoscopy, GORE-TEX		
2 nd Recurrence Time from second repair	5.6 months						
Location of recurrence Repair	Medial aspect of patch Laparotomy, Additional GORE-TEX		Not a	oplicable			

3 years 8 months

8 years 3 months

Discussion

- When more than primary repair is required, there is no consensus on techniques for repair
- Both patch and flap are often compared to primary repair
- -Not a reliable comparison
- -ls a surrogate for larger defect size
- Two studies evaluate techniques side-by-side 1,2
- -sample sizes are small
- -recurrence noted in both groups
- Nasr: 2/19 flap and 8/32 patch
- Barnhart: 1/23 flap and 5/10 patch
- Our results are one of the largest series available in the literature with one of the longest follow-up time frames
- -low recurrence in both groups
- -both are effective and durable

Table 2

	Patch (n=34)	Flap (n=57)	p
Operative characteristics	•	- \	-
Age at operation (day-of-life)	16.18 ± 13.38	14.25 ± 11.12	0.460
Surgery time (minutes)	252.89 ± 71.50	253.57 ± 69.22	0.967
Blood loss (milliliters)	11.22 ± 6.82	18.18 ± 17.58	0.051
Outcome			
ECMO during hospitalization	11 (32.4%)	20 (35.1%)	0.790
Repaired on ECMO	9 (26.5%)	17 (29.8%)	0.732
Age at ECMO cannulation (days)	1.09 ± 0.30	3.25 ± 7.99	0.382
Duration on ECMO (days)	11.45 ± 3.17	9.95 ± 4.63	0.346
Age at extubation (days)	32.13 ± 18.28	50.67 ± 66.53	0.195
Length of stay (days)	86.97 ± 49.87	103.78 ± 72.23	0.273
Hernia recurrence (patients)	3 (8.8%)	2 (3.5%)	0.295
Hernia recurrence time (months)	6.00 ± 0.00	57.00 ± 72.13	0.272
Values expressed as means ± standard deviations of ECMO, extracorporeal membrane oxygenation.	or counts (percentage of t	he group)	

Conclusion

 For large defect CDH recurrence rates are similar for prosthetic patch and muscle flap repair

References

1. Nasr A, Struijs MC, Ein SH, Langer JC, Chiu PP. Outcomes after muscle flap vs prosthetic patch repair for large congenital diaphragmatic hernias. J Pediatr Surg 2010;45(1):151-4.

2. Barnhart DC, Jacques E, Scaife ER, Yoder BA, Meyers RL, Harman A, et al. Split abdominal wall muscle flap repair vs patch repair of large congenital diaphragmatic hernias. J Pediatr Surg 2012;47(1):81-6.